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CHARTS FOR THE ANALYSIS OF
ISENTROPIC ONE-DIMENSIONAL UNSTEADY EXPANSTONS IN
EQUILIBRIUM REAL AIR WITH PARTICULAR REFERENCE TO
SHOCK-INITTIATED FLOWS

By William L. Grose and Robert L. Trimpi
SUMMARY

Charts are presented which facilitate the theoretical analysis of certain
flow processes involving an unsteady expansion wave in equilibrium real air. The
parameters evaluated are related to (a) the velocity change in an unsteady expan-
sion wave, (b) the maximum velocity attainable in a shock-wave—expansion-wave

ycle, (c) the time for characteristic traversal through an expansion wave, and
?d) the entropy in shock-initiated flows. Such parameters are of particular
interest in analysis of the shock-initiated expansion-tube cycle.

INTRODUCTION

Evaluation of the steady isentropic expansion of equilibrium real air is
relatively simple because of the invariance of entropy and total enthalpy in this
process. It 1s necessary only to follow a constant-entropy line on a Mollier
diagram to determine the fluid properties, and the fluid veloecity is subsequently
determined by equating the kinetic energy with the difference between the total
and local enthalpies. However, in an isentropic unsteady expansion, the evalua-
tion of an integral is necessary because the total enthalpy is not constant. This
paper presents the results of such integrations in the form of working charts
suitable for facile ilnterpolation.

The work reported herein resulted from the requirement for rapid analysis of
expansion-tube design and performance. (See ref. l.) The expansion-tube cycle
is illustrated in figure 1 by a distance-time diagram. Note that the flow expands

unsteadily between region () and region CD, the test region. Calculation of
the flow properties in the test region necessitates an intermediate integration
across the unsteady expansion fan.

Reference 2 tabulates some functions for an unsteady expansion, but the tables
are based on a constant value of the specific heat ratio 7. An approximation for
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real air in equilibrium may be found in reference 3 for some of the functions
required, but the entropy intervals are too large for satisfactory interpolation
and the enthalpy range is somewhat limited, especially at higher—entropy levels.

Although originally constructed for application to the expansion-tube cycle,
the utility of the charts is by no means restricted solely to this purpose.

SYMBOLS

a speed of sound

ag speed of sound in argon-free air at reference conditions,
1,089 ft/sec = 0.3320 mm/usec

h static enthalpy
1 = L/hp dp
o P&
Mg shock Mach number, Us/al
P static pressure
R gas constant for argon-free air,

1.72h x 103 £t2[(sec)(°R) = 6.886 x 10~2 Btu/(1b)(CR)

S entropy per unit mass

T absolute temperature

To temperature at reference conditions, 491.69° R = 273.16° K
t time

US shock velocity

u flow velocity

uy limiting velocity

X distance

Y ratio of specific heats

75 ratio of specific heats at reference conditions, 1.4



1 = logg —— J
(at<)
h/RT,
p density
Subscripts:
1,2,5 flow regimes in expansion-tube cycle (fig. 1)
* conditions at h/RTO =1

ANATYSIS

Velocity Change in One-Dimensional Isentropic Unsteady Expansion

The differential equation for an isentropic unsteady expansion is

u = 1 (d_;-)s p (1)

with the negative and positive signs referring to upstream and downstream waves,
respectively. The equation for the speed of sound at reference conditions

o> = 7 RT, (2)

is used to put equation (1) in the following dimensionless form:

h
q —
RT,
d.u_=:r_i ) (3)
8o 7o \e/20 s/R

The equilibrium properties of real air from references 4, 5, and 6 were used to
plot the variation of (a/a.o)'l with h/RT, for various unit values of s/R.
Equation (3) was then integrated numerically from the limit h/RTO =1 to an
arbitrary value of h/RTO. The function Au = f(h/RTo) is defined as

h[RT, q .k

h h e RT,
Mf—) =1, - uf—\|=3—= (W)

(RTO> * (RTO> 7o h [RTo=1 a/ag

Values of Au as a function of h/RTo are plotted in figure 2. The param-
eter Au 1s analogous to the Prandtl-Meyer angle v of steady flow (ref. T).
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The quantity v(M) is the angle through which the flow is turned in an isentropic
expansion from M =1 by waves of a single family to reach the Mach number M;
and Au(h/RTO) is the velocity change obtained by single-family isentropic expan-
sion from arbitrary h/RTO down to h/RTg = 1. The value of Au is positive

for upstream (Q) expansion waves and negative for downstream (P) expansion waves.

The value of Au for a perfect gas with constant specific heat may be found
in closed form by integrating equation (h). The result is

o [To ([E
M =2 o\ 7o - T < "1, l> (5)

This perfect-gas value is also plotted in figure 2 and falls below the real-air
values.

To illustrate the application of figure 2, consider an expansion (Q type)
between static-enthalpy levels hp and hs (where hpo > h5). Entering figure 2

at these values of enthalpy at the appropriate value of S/R ylields

My = vy - up(hpfRT)

(6)

Aug = uy - u5(h5/RTO)

The difference between the two expressions is the velocity increment imparted to
the flow by an isentropic unsteady expansion between enthalpies ho, and h5,

namely

us - up = (u5 - u*) - (u2 - u*) = Duy - Lusg ("N

A function corresponding to Au is the 1 of reference 3, which is defined
as the integral at constant entropy:

P ap
z=f035 (8)

Thus
Au(__h_>
L Mo/ _ 4u(0) (9)
a,

aq o) o

Although reference 5 1s adequate for many purposes, the use of an approximate
model for equilibrium air, along with the fact that results are tabulated only at
intervals of 5 in s/R and that the range of enthalpies is somewhat restricted,

7



limits its suitability for the rapid analysis of the expansion-tube cycles. In
ranges where comparison of the results of reference 5 with those of the present
paper was possible, agreement within 2 percent was found for the corresponding

velocity functions.
Transit Time of Downstream Characteristic Through a
Centered Upstream Expansion Wave

Figure 13 of reference 1 indicates that one of the factors limiting the max-

imum available testing time in region C? is the arrival of a P-characteristic
wave. This P-wave is the first of a family generated either by reflection of the

expansion wave (QD - C)) in the driver or by the interaction of the first con-

tact surface and the expansion fan (() - CD). (see ref. 8.)

The speed at which the P-characteristic propagates is
X _u+a (10)
dat
Now, for a centered upstream (Q) wave originating at x =0 and t =0,
x = (u - a)t (11)

Differentiating equation (11) and substituting the result into equation (10) pro-
duces the relation

h
d RT
2%+d§=-71-—° (13)
© (a/ao) S/R
which may then be integrated as
hIRTo a h
RT
7=k e (%)

7o Jn[RTo=1 (a/ac)®



where 1, the nondimensional transit-time parameter, is defined as
(15)

Plots of (a/ao)-2 as a function of h/RT, were numerically integrated between
limits of arbitrary h/RT, and h/RT; = 1. In addition, integration of equa-
tion (14) for a perfect gas with constant specific heat ylelds

1 h
= —= 1 = 16
N = 5o L% mr (16)

The results of these integrations are presented in figure 3. This chart is
used in the manner prescribed for figure 2, but in addition it requires that the
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sound speed at the two limits of integration be known in order to determine the
transit time. Also, it must be remembered that zero time refers to the time at
the origin of the expansion fan.

Entropy of Shock-Initiated Flows

In applying the results of figures 2 and 3 to shock-initiated flows, it is
necessary first to determine the entropy of the flow. Figure 4 is a plot of shock
velocity against flow entropy for various values of pressure P ahead of the
shock when T; = 500O K. The shock-speed scale 1s expressed in mm/psec to per-

mit easy use of the charts of reference 4 for determining the pressure and veloc-
ity in state C) behind the shock wave. For values of pl between 0.001 and
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Figure U4.- Entropy of shock-initiated air flows as a function of shock velocity. Tl = 300o K.
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T6 cm Hg and Ug > 2.1 mm/usec the value of se/R was read from Mollier charts
by using the data of reference 4, which encompass only this range of P and US‘
For values of Ug < 2.1 mm/jsec (MS < 6.05) the equilibrium results of refer-

S = S
ence 9 were employed to plot the variation of —g—ﬁ-—i with US’ and these plots

were then interpolated at the desired pressure level (pl). The dashed curves of
figure 4 for P, 2 200 cm Hg are extrapolations obtained from a cross plot of
Sp - S
R
Ug = 8 mm/usec, P = 2,000 cm Hg) in this extrapolation is believed to be less

against log Py at constant values of US. The largest error (at

than 0.2 in sQ/R.

Limiting Velocity of Shock-Initiated Flows

In the analysis of the expansion-tube cycle or other shock-initiated flows
it is often advantageous to know the limiting velocity of the flow. This
limiting velocity is defined for the purposes of this paper as the velocity that
a flow might attain if expanded isentropically by an unsteady expansion wave to
h/RT, = 1; that is, u; = u + su(h/RT,). OFf course, this limiting velocity is not

the maximum velocity obtainable, since an additional increment would result from
further expansion from h/RT0 =1 to h/RTO = 0. For the particular case of a

shock-initiated flow the limiting velocity becomes
u; =u, + Au(hp/RT,) (17)

Since both up and Au are functions of the shock speed and flow entropy, uy
can be plotted against Ug with 32/R as a parameter; figure 5 is such a plot.
It is of interest to note the very high values of u, attainable.

DISCUSSION

The utilization of the curves of this report is illustrated by the following
example. The problem is the determination of the conditions required in an
expansion-tube cycle to produce a test velocity of Us = 40,000 ft/sec at an

altitude of 250,000 feet. The free-stream nondimensional entropy s/R at this
altitude is 33.0 and the enthalpy h/RTO = 2.3. Since state C) is produced by
an unsteady expansion from state C), the entropy and limiting velocity are equal
in both states. First Uy 5 is computed by reading Au(h5/RTO) from figure 2:

ug,5 = u5 + Au(hs[RT,) = 40,000 + 1,500 = 41,500 £t /sec

12
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Limiting velocity, v, ft/sec
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Then the shock speed for wu; = 41,500 ft/sec at 52/R = 35.0 1is found from fig-
ure 5 to be Ug = 3.90 mm/usec. This value of Ug is then used to enter figure 4
to determine p; = 26 cm Hg.

Once the shock speed US and initial pressure Py are known, the other
properties in region C) can be found from the charts of reference 4. Pertinent
values for this example are hQ/RTO = 99.k, p2/po = 54,7, and u, = 11,400 ft/sec.

The simplicity of this procedure is a contrast to the iteration method of refer-
ence 1.

The application of figure 3 in determining the ratio of transit times
(tII/tIII of fig. 13 in ref. l) may be similarly found.

CONCLUDING REMARKS

Charts are presented which facilitate the theoretical analysis of certain
flow processes involving an unsteady expansion wave in equilibrium real air. The
parameters evaluated are related to (a) the velocity change in an unsteady expan-
sion wave, (b) the maximum velocity attainable in a shock-wave—expansion-wave
eycle, (c) the time for characteristic traversal through an expansion wave, and
(d) the entropy in shock-initiated flows. Such parameters are of particular
interest in analysis of the shock-initiated expansion-tube cycle, as illustrated
by the sample computation.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., February 18, 1963.
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